New Research Suggests Two Overlooked Functions of Junk DNA

Life scientists continue to identify new functions for so-called junk DNA. Recently, a researcher from the US Centers for Disease Control and Prevention pointed out two overlooked “junk DNA” functions: (1) serving as a nucleoskeleton that establishes the volume of the cell’s nucleus; and (2) acting as a mutational buffer that protects the genome from mutations resulting from transposon and retroviral DNA insertion activity. Such results help undermine the argument that junk DNA must be leftovers of evolutionary processes, not the creation of an intentional Designer.

****

If you cannot be open-minded, then you do not possess your ideas, your ideas possess you.

Bryant McGill

DNA is a remarkable molecule—its double helix design displays a certain beauty and, in biochemical terms, its structure and function are no less pleasing to behold. As I discuss in my book The Cell’s Design, DNA is structurally optimized to carry out its chief function: storage of information used by the cell’s machinery to generate life’s building blocks and direct the cell’s operation. (For an example of the optimized structure-function relationships found in DNA, see “DNA Soaks Up Sun’s Rays.”)

Yet there is more to DNA’s purpose than information storage. Recently, biologist Claudiu Bandea of the US Centers for Disease Control and Prevention argued that DNA sequences assume noninformational roles that biologists have often overlooked.1 These noninformational functions help account for the existence of abundant junk DNA in the genomes of humans and other organisms.

Nucleoskeletal Support

186741116First, Bandea shows that DNA plays a skeletal role by helping to establish and maintain the size of the cell’s nucleus. This function is called the nucleoskeletal hypothesis. According to this idea, the amount of DNA in a cell dictates the nuclear volume. The size of the nucleus is not arbitrary, however, but must be maintained within tight limits. The cell will die if the ratio of the nuclear volume relative to overall cell volume deviates too much. Presumably, the nucleoskeletal role of DNA can account for the vast amount of junk DNA within genomes and helps explain the C-value paradox. Larger cells require a larger nucleus and, consequently, a greater amount of junk DNA in their genomes to maintain an adequate nuclear volume. (For more, see “TNRTB Classic: Junk DNA and the Nucleoskeletal Hypothesis.”)

Mutation Shield

Bandea also asserts that junk DNA may serve as a mutational buffer. He notes that the human genome (and the genomes of other organisms) consists of a significant fraction of mobile DNA pieces called transposons. These pieces of DNA move around the genome and, presumably, insert at random into different locations. (Some transposons also possess the capacity to duplicate in the process.) If insertions occur in coding or regulatory regions of the genome, mutations result.

Retroviruses pose a similar problem. When viruses invade a cell, retroviral DNA inserts into the host’s genome. Again, these insertion events can be disruptive if they occur within functional sequences.

But Bandea posits that high levels of junk DNA can make genomes more resistant to the deleterious effects of insertion events. If insertion events are random, then the offending DNA is much more likely to insert itself into “junk DNA” regions instead of coding and regulatory sequences—thus, protecting information-harboring regions of the genome. To say it another way, junk DNA sequences could serve as buffers against mutations that arise from transposon and retroviral DNA insertion events.

Solving the C-Value Paradox

If junk DNA functions as a mutational buffer, then it could also help account for the C-value paradox (which observes “that genome size does not correlate with organismal complexity”).2 It could be that the varying genome sizes are not arbitrary, but instead correlate with the amount of protective DNA. Genomes with higher transposon activity could require a greater buffering capacity and, consequently, more junk DNA.

When it comes to understanding genomes (human or otherwise), the evolutionary paradigm has continuously restricted the view of many people in the scientific community by compelling them to classify, noncoding DNA as the leftover vestiges of evolution. But, as Bandea’s research shows, a narrow focus on DNA’s informational role has interfered with the acknowledgment of junk DNA’s important noninformational functions. Such discoveries help open up the possibility for nonevolutionary interpretations of genome content, including the notion that these tiny pieces of DNA stem from an intelligent Mind.

References

  1. Claudiu I. Bandea, “On the Concept of Biological Function, Junk DNA and the Gospels of ENCODE and Graur et al.,bioRxiv, published electronically November 18, 2013,  doi: 10.1101/000588.
  2. “C-value enigma,” Wikipedia, last modified June 30, 2013, http://en.wikipedia.org/wiki/C_value_paradox.

 

About these ads
Comments
One Response to “New Research Suggests Two Overlooked Functions of Junk DNA”
  1. Recently I read a couple of papers on [idealised] versions of non-coding DNA in genetic algorithms, it’s really interesting stuff. Poor chaps being called ‘junk’ for so long, must have done hell for their self-esteem!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

  • Hidden Treasures in the Book of Job

    Arguably the oldest book in the Bible, the book of Job has a surprising amount to say about some of the newest scientific discoveries and controversies. With careful consideration and exegesis, Hugh Ross shows that the Bible is an accurate predictor of scientific discoveries, and that both the book of Scripture and the book of nature are consistent both internally and externally.
  • Creating Life in the Lab

    Representing the best of RTB's efforts to anticipate scientific breakthroughs and explain their contribution to the case for Christian faith, biochemist Fuz Rana shows how recent advances in synthetic biology actually undermine the evolutionary explanation for the origin of life. Creating Life in the Lab addresses the scientific, theological, and philosophical aspects on both the dangers and promises of synthetic biology.
  • If God Made the Universe…Why Is It the Way It Is?

    Drawing from his popular book Why the Universe Is the Way It Is, Dr. Hugh Ross shares Scripture, stunning satellite photos, and the most recent scientific findings to explain the great love story that is our universe. This DVD series invites you to be a part of Dr. Ross’ small group. Each session includes a brief presentation (about 20 minutes), followed by Q&A.
  • Impact Events: The Earth

    In this unique student devotional, astrophysicist Jeff Zweerink and seasoned small-group leader Ken Hultgren connect little-known facts about our planet with faith-building insights about the Creator. The booklet includes practical, yet thought-provoking questions to help students apply each lesson’s principles to their lives. This Impact Events series is designed to transform your life and faith with truth from God’s Word and evidence from God’s world. God wants to impact your life. Will you let Him?
Follow

Get every new post delivered to your Inbox.

Join 125 other followers

%d bloggers like this: