The Optimal Design of Metabolism

New work by scientists from Switzerland and the Netherlands provides increased evidence for the optimal design of the cell’s metabolic pathways. This optimization supports the notion that life stems from the work of an intelligent Agent.

****
One of the biggest shocks I experienced when we moved from Cincinnati, Ohio to the Los Angeles area thirteen years ago was the traffic—and the complexity of the Southern California freeway system. (When you ask someone for directions, it sounds like a quarterback calling out signals at the line of scrimmage: take the 210 to the 57 to the 5 to the 55 to the… hut!)

Figure 1 Image credit: Fazale (Fuz) Rana

Yet, in spite of the horrible traffic and complex directions, the well-designed freeway system makes it easy to navigate the greater Los Angeles area. Virtually all of the towns and cities are laid out on a grid, connecting major roadways to different regions of the Southland.

Conversely, cities on the east coast are laid out in a haphazard manner, in part because they were built hundreds of years ago, well before automobiles became the dominant means of transportation.

In many ways, the city streets and highways serve as an analogy for the way metabolic pathways are organized inside the cell. As recent work by a team of researchers from Switzerland and the Netherlands demonstrates, these pathways have much more in common with the Southern California freeway system than with the roadways of a typical city in the eastern United States.1

Metabolic Pathways
Metabolism refers to the myriad chemical reactions that occur in organisms necessary to sustain life. Metabolic activity makes it possible for life-forms to extract energy from the environment and construct life’s components. These processes allow organisms to grow, reproduce, maintain biological structures, and respond to changes in the environment. Metabolic reactions include the production and breakdown of proteins and RNA molecules, DNA replication, and the assembly of cell membranes and cell walls.

Additionally, metabolism involves reactions of small molecules. A significant number of metabolic reactions produce small molecules used by the cell’s machinery as building blocks to assemble proteins, DNA, RNA, and cell membrane bilayers. On the other hand, some metabolic activities breakdown compounds like glucose and other sugar molecules into smaller molecules to provide energy for the cell’s operations. Some metabolic activities prepare materials the cell no longer needs (cellular waste) for elimination. Other reactions detoxify materials that are harmful to the cell.

Within the cell’s interior, metabolic processes are often organized like city streets into routes or pathways comprised of a series of chemical reactions. These reactions transform a starting compound into a final product via a series of small, stepwise chemical changes. Each step in a metabolic route is mediated by a protein (called an enzyme) that assists in the chemical transformation. These pathways can be linear, branched, or circular. An example of a linear pathway is glycolysis, which is illustrated in Figure 1 below.

Figure 1 image credit: http://en.wikipedia.org/wiki/File:Glycolysis.jpg

The chemical components that form part of a particular metabolic sequence sometimes take part in other metabolic pathways. These shared compounds cause metabolic pathways to be interconnected and networked together. The sum total of metabolic processes represents a complex, reticulated web of chemical reactions, each one catalyzed by an enzyme. Figure 2 below shows (in a highly schematic way) the major metabolic pathways in the cell and some ways that they interconnect.

Figure 2 image credit:

http://en.wikipedia.org/wiki/File:Metabolism_790px_partly_labeled.png

Given the vast complexity of the cell’s metabolism, (go here for a detailed depiction of the cell’s metabolic pathways) it’s easy to envision how evolutionary processes could have poorly matched the pathways together, bit by bit, over a vast period of time—just like the random layout of some cities in the eastern United States.

However, a number of recent reports point out that metabolic pathways in the cell appear to be designed exquisitely, rather than haphazardly. (For more details, go here and here.)

A new study further highlights the optimality of the cell’s metabolic systems.2 Using the multi-dimension optimization theory, researchers evaluated the performance of the metabolic systems of several different bacteria. The data generated by monitoring the flux (movement) of compounds through metabolic pathways (like the movement of cars along the roadways ) allowed researchers to assess the behavior of cellular metabolism. They determined that metabolism functions optimally for a system that seeks to accomplish multiple objectives. It looks as if the cell’s metabolism is optimized to operate under a single set of conditions. At the same time, it can perform optimally with relatively small adjustments to the metabolic operations when the cell experiences a change in condition.

This latest study illustrates that biochemical systems are highly optimized. Optimization is a hallmark feature of man-made designs, and it requires planning and deliberate effort to achieve such optimization. So, by analogy, one could argue that the optimization of biochemical systems reflects the work of an intelligent Agent—a Creator. (See my book, The Cell’s Design, for a more detailed presentation of this argument.)

Endnotes:

  1. Robert Schuetz et al., “Multidimensional Optimality of Microbial Metabolism,” Science 336 (2012): 601–4.
  2. Ibid.
About these ads
Comments
One Response to “The Optimal Design of Metabolism”
  1. kagmi says:

    No one knows where the first cell came from, of course. We will probably never have hard evidence of this–only guesses about what the possibilities are, based on what we can replicate today in the lab.

    I’m curious as to what you think an intelligent origin for life on Earth would imply for possibilities of life on other worlds.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

  • Hidden Treasures in the Book of Job

    Arguably the oldest book in the Bible, the book of Job has a surprising amount to say about some of the newest scientific discoveries and controversies. With careful consideration and exegesis, Hugh Ross shows that the Bible is an accurate predictor of scientific discoveries, and that both the book of Scripture and the book of nature are consistent both internally and externally.
  • Creating Life in the Lab

    Representing the best of RTB's efforts to anticipate scientific breakthroughs and explain their contribution to the case for Christian faith, biochemist Fuz Rana shows how recent advances in synthetic biology actually undermine the evolutionary explanation for the origin of life. Creating Life in the Lab addresses the scientific, theological, and philosophical aspects on both the dangers and promises of synthetic biology.
  • If God Made the Universe…Why Is It the Way It Is?

    Drawing from his popular book Why the Universe Is the Way It Is, Dr. Hugh Ross shares Scripture, stunning satellite photos, and the most recent scientific findings to explain the great love story that is our universe. This DVD series invites you to be a part of Dr. Ross’ small group. Each session includes a brief presentation (about 20 minutes), followed by Q&A.
  • Impact Events: The Earth

    In this unique student devotional, astrophysicist Jeff Zweerink and seasoned small-group leader Ken Hultgren connect little-known facts about our planet with faith-building insights about the Creator. The booklet includes practical, yet thought-provoking questions to help students apply each lesson’s principles to their lives. This Impact Events series is designed to transform your life and faith with truth from God’s Word and evidence from God’s world. God wants to impact your life. Will you let Him?
Follow

Get every new post delivered to your Inbox.

Join 142 other followers

%d bloggers like this: